Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
from1(X) -> n__from1(X)
activate1(n__from1(X)) -> from1(X)
activate1(X) -> X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
from1(X) -> n__from1(X)
activate1(n__from1(X)) -> from1(X)
activate1(X) -> X

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

SEL2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))
ACTIVATE1(n__from1(X)) -> FROM1(X)

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
from1(X) -> n__from1(X)
activate1(n__from1(X)) -> from1(X)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

SEL2(s1(X), cons2(Y, Z)) -> ACTIVATE1(Z)
SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))
ACTIVATE1(n__from1(X)) -> FROM1(X)

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
from1(X) -> n__from1(X)
activate1(n__from1(X)) -> from1(X)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 1 SCC with 2 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))

The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
from1(X) -> n__from1(X)
activate1(n__from1(X)) -> from1(X)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SEL2(s1(X), cons2(Y, Z)) -> SEL2(X, activate1(Z))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(SEL2(x1, x2)) = 2·x1   
POL(activate1(x1)) = 0   
POL(cons2(x1, x2)) = 0   
POL(from1(x1)) = 0   
POL(n__from1(x1)) = 0   
POL(s1(x1)) = 2 + 2·x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ QDP
          ↳ QDPOrderProof
QDP
              ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

from1(X) -> cons2(X, n__from1(s1(X)))
sel2(0, cons2(X, Y)) -> X
sel2(s1(X), cons2(Y, Z)) -> sel2(X, activate1(Z))
from1(X) -> n__from1(X)
activate1(n__from1(X)) -> from1(X)
activate1(X) -> X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.